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The efficacy and accuracy of Bogomolny’s method of the quantum surface of section are evaluated
by applying it to the quantization of the motion of a particle in a smooth two-dimensional potential.
This method defines a transfer operator T in terms of classical trajectories of one Poincaré crossing;
knowledge of T' provides information about the eigenstates of the quantum system. By using a more
robust quantization criterion than the one proposed by Bogomolny, we are able to locate more than
500 quantum states in both the regular and the chaotic regimes—in most cases unambiguously—and
see no reason why the spectra could not be continued indefinitely. The errors of the predictions are
comparable in the two regimes, and are roughly constant for increasing excitation, but they grow
as a fraction of the (shrinking) mean level spacing. We also show the computed surface of section
wave functions, and present other theoretical and practical results related to the technique.

PACS number(s): 05.45.+b, 03.65.Sq, 05.30.Ch, 03.65.Ge

I. INTRODUCTION

Semiclassical methods of quantizing certain types of
Hamiltonian systems have been known since the discov-
ery of quantum mechanics. Specifically, if a Hamiltonian
is classically integrable (if it has as many constants of mo-
tion as degrees of freedom) then its trajectories are con-
strained to invariant tori, and Einstein-Brillouin-Keller
(EBK) quantization can be applied. Quantization oc-
curs when the action integrated along any closed loop on
one of these tori satisfies

]{ - dq = 2nh(n; + pi/4) ,
C;

where p; is an integer that counts the number of caustics
along the trajectory. For one-dimensional (1D) Hamilto-
nians (all of which are integrable), the tori are just the
periodic orbits, and the analogous WKB method can be
applied; it yields accurate results with little effort, even
for the ground state. However, integrable systems form
only a subset of measure zero of all Hamiltonians systems;
the fact that most famous and textbook examples are of
the integrable sort is because they are easier to handle,
not because nonintegrable systems are intrinsically less
interesting.

Steps towards understanding how to quantize generic,
nonintegrable systems semiclassically are more recent.
The approach that currently dominates the field is the
trace formula of Gutzwiller, which sums purely classi-
cal information about periodic orbits into an expression
for the quantum mechanical density of states; the poles
of the expression indicate quantum eigenenergies [1-4].
However, the number of periodic orbits increases expo-
nentially with period—faster than the contributions of
individual orbits decrease; thus the sum does not con-
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verge absolutely. A large volume of current research is
devoted to developing clever tricks to reorder the sum in
such a way that it converges to a useful answer, but the
problem is not yet satisfactorily solved.

Recently, Bogomolny proposed an entirely different
scheme to obtain eigenstate information in the semiclas-
sical limit by using a quantum surface of section (SOS)
[5]. His method, which is the topic of this paper, will be
specified precisely and discussed at length in subsequent
sections; for now, we will try to present a conceptual
overview while avoiding unnecessary details.

A quantum surface of section is akin to the classical
Poincaré surface of section, which has proven so useful to
classical dynamicists both practically and theoretically.
A classical Poincaré SOS is a surface drawn through a
system’s phase space; the trajectory of interest is com-
puted and each time that it pierces the surface in a pre-
specified direction, the point where the crossing occurred
is noted. The pattern of points produced by a succession
of crossings gives information about the nature of the
trajectory—for example, whether it is periodic, quasi-
periodic, or chaotic. SOS’s are most useful for systems
that have two degrees of freedom; such a system has a
four-dimensional phase space and a three-dimensional en-
ergy shell, but only a two-dimensional surface of section
(the most convenient dimension for plotting and view-
ing).

Bogomolny’s quantum surface of section is similarly
a surface drawn through the configuration space of the
corresponding classical Hamiltonian. Again classical tra-
jectories are integrated from one crossing until the next
same-direction crossing of the surface. But now, in-
stead of only marking the points where the trajecto-
ries cross the surface, one also notes the semiclassical
phase exp(iS/h) which has accumulated since the pre-
vious crossing (S = [ - dq is the action accumulated
along the trajectory). Such information, for all classi-
cal orbits of one Poincaré mapping and some energy E,
is summed together and projected onto the coordinate
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part of the SOS into a transfer operator T which will
be defined below. The projection process discards the
momentum information normally associated with a clas-
sical surface of section, and T correspondingly operates
on functions of one variable fewer than the number of
degrees of freedom in the system (namely, the Poincaré
section’s position coordinates).

Since T requires only information about trajectories
of one Poincaré mapping, it is well defined in terms of
only finite quantities. Therefore there are no problems
at all, neither theoretical nor practical, with divergences
in Bogomolny’s technique. The T matrix can be com-
puted to arbitrary accuracy, requiring (as we shall see)
only a two-dimensional numerical quadrature of finite-
time orbits. This very attractive attribute is one that is
not possessed by the Gutzwiller trace formula, which is
plagued by the exponentially growing number of periodic
orbits of increasing period.

Conceptually, T gives the evolution of a quantum me-
chanical wave function from one intersection with the
SOS to the next. In this regard T is akin to a Green
function in the energy representation. T operates on
functions |¢) which exist on the coordinate part of the
surface of section:

lY') = T|y) .

[#) has the value of the full quantum mechanical wave
function where the latter intersects the surface of section.
T applied to |¢) produces, roughly speaking, the image
of |¢) after one Poincaré mapping. Eigenstates of the
quantum system occur for values of adjustable parame-
ters (which we call o, but could be for example E or A)
for which T, has an invariant state

Talt) = |4); (1)

i.e., they occur whenever T, has an eigenvalue that is
equal to unity. So to find the eigenstates of a quantum
mechanical system, one computes T, diagonalizes it to
find its eigenvalues, and plots those eigenvalues in the
complex plane for a range of . Whenever one of the
eigenvalues crosses through 1, then at the corresponding
set of parameters a, the quantum mechanical system is
predicted to have an eigenstate.

We know of four other calculations to date that use
Bogomolny’s technique. Lauritzen [6], by resorting to
a stationary phase integral, showed that Bogomolny’s
quantization condition (1) reduces to EBK quantization
for integrable systems in general, and the rectangular
billiard in particular. Bogomolny and Carioli [7] applied
the method to a “surface of constant negative curvature”
with vanishing potential energy; this is a billiard-type
chaotic system whose orbits can also be written explic-
itly.

Szeredi, Lefebvre, and Goodings [8] used the quantum
SOS in their study of the wedge billiard, a scalable sys-
tem bounded on two sides by straight hard walls and
confined in the open direction by a uniform downward
gravitylike force. This system has four types of orbits
of one Poincaré mapping, which can be written down;

they summed these orbits into a 7' matrix in a basis
of position-space cells and were able to reproduce the
first 20 quantum eigenvalues with an average rms error
of 6.5% of the mean level spacing.

Finally, Boasman in his thesis [9] thoroughly investi-
gates, in a largely analytic way, the asymptotic accuracy
that Bogomolny’s method achieves for billiard problems,
and supports his predictions with evidence from numer-
ical calculations.

Each of the previous calculations was restricted to non-
generic systems—integrable systems or billiards (or inte-
grable billiards). There is, of course, a reason for pre-
ferring billiards: they are scalable systems whose classi-
cal trajectories are the same regardless of energy, many
chaotic billiards are known, and, most importantly, one
can write down explicit formulas for the classical trajec-
tories connecting any two points on the surface of section.
On the other hand, billiards are thought to have differ-
ent convergence properties than smooth potentials [10].
Moreover, smooth potentials—not billiards—are the kind
typically encountered in models of natural systems, so it
is interesting to know how well they can be handled with
new methods.

Therefore we chose to undertake our research in this
more challenging laboratory—the smooth Hamiltonian
system. The centerpiece of this paper is a computational
application of Bogomolny’s method to the Nelson; po-
tential (see the Appendix), a smooth, bounded, nonlinear
oscillator with Hamiltonian

2
1, 2 2 1 22 1 1,
H:E(pz—{—py)—}—iwm +~2- y—§:c .

The system is nonscalable and has a rich periodic or-
bit structure [11]. For low energies, it approaches a 2D
anisotropic harmonic oscillator and is predominantly reg-
ular; as the energy is increased, the degree of chaos in-
creases and eventually dominates the phase space. We
will present computations in both regimes to illuminate
the similarities and differences.

This paper is organized as follows. Section ITI A out-
lines the idea of Bogomolny that is the subject of this
paper. Section IIB develops various expressions for T
which offer a somewhat different perspective on its op-
eration, and which translate directly into a quadrature
algorithm for computing 7" in a nonbilliard system. Sec-
tion IT C shows how to take advantage of a mirror symme-
try when computing T'. Section IID estimates the effort
needed to apply Bogomolny’s method, as compared with
traditional methods. Section IIE explains a trick which
enables Bogomolny’s theory to be verified with less nu-
merical effort than a naive approach would require. Sec-
tion III discusses the nature of eigenclassicity problems in
general, and provides details of how the exact eigenclas-
sicity spectrum was calculated for the Nelson, system.
Section IV A introduces the model system to which we
applied Bogomolny’s method. Section IV B gives some of
the behind-the-scenes details about our implementation
of the semiclassical computation. Section IV C qualita-
tively describes the behavior of the eigenvalues of the
T operator. Section IVD presents the eigenclassicity
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spectra produced by Bogomolny’s method, and compares
them to exact spectra in both the regular and the chaotic
regime. Finally, Sec. IVE tells how the surface of sec-
tion wave functions can be obtained from the theory, and
makes some comments about how well they are predicted.

A comment about nomenclature: we will be deal-
ing with two related but distinct eigenproblems—
Bogomolny’s condition on the T, operator [Eq. (1)] and
the time independent Schrédinger equation for the full
quantum mechanical system. In order to reduce confu-
sion, we assume the following naming convention. The
terms eigenvalues and surface of section eigenfunctions
in this paper always refer to quantities obtained from
diagonalizing the 7, operator. It should be kept in
mind that T, and its eigenvalues can be computed for
any choice of parameters «, whether or not an eigen-
state of the quantum system exists for those parameters.
The words eigenenergies, eigenclassicities (explained be-
low), and eigenstates all refer to energy eigenstates of the
full quantum mechanical Hamiltonian. These eigenstates
only exist for special values of the parameters a—in fact,
only those for which T has a unit eigenvalue, according
to Bogomolny’s theory.

II. THEORY
A. The results of Bogomolny

Bogomolny [5] gives an expression for the transfer oper-
ator T for systems of any dimension and using any surface
of section. Our interests are narrower, since the systems
for which we will be doing computations are symmetric
about the y axis, and the y axis will be used as the sur-
face of section. In this case, the expression for T' can be
written

1/2

928(y',y)
dyoy’

, 1
'|Tly) = (2mik)1/2 cht;

xe /2 expi (2)

T can be calculated for any chosen value E of en-
ergy. The sum is over all classical trajectories which
have that energy and start at (0,y) and end at {0,y’)
one Poincaré mapping later (that is, with no interven-

ing same-direction piercings of the SOS) (see Fig. 1).

S(,y)
==

Sy,y) = f;’ P - dq is the classical action along the tra-
jectory considered. The second derivative of S gives the
degree of focusing of nearby trajectories onto the current
trajectory. The focusing switches sign each time that
there is a perfect reconvergence of nearby trajectories,
which would lead to a branch cut ambiguity when its
square root is taken; therefore its absolute value is taken
and the phase is put in separately through the Maslov
index v, which counts the number of sign changes in the
focusing (note: its role is a bit subtler in higher dimen-
sions; see Ref. [12]).

Bogomolny’s construction of the T" operator begins by
dividing the allowed portion of phase space into two sub-

Surface of

FIG. 1. Orbits which contribute to the semiclassical trans-
fer operator. In Bogomolny’s construction, the trajectories
which contribute are those of one complete Poincaré section:
they are integrated from one intersection with the y axis until
the next intersection that occurs in the same direction.

regions “1” and “2,” one on either side of the surface
of section. In each half, a Green function G4, is con-
structed which (i) obeys Schrodinger’s equation in that
subregion, (ii) is arbitrary on the SOS, and (iii) obeys
the same boundary conditions as the true wave functions
on the remainder of the boundary of that subregion. The
next step is to write the wave functions in terms of the
Green functions and a source function 1, 2(y) on the sur-
face of section:

‘Ill,z(w,y)=/2dy' Gi2(z,459's E)¢1,2(y') -

This equation, plus the demand that ¥; and ¥, match on
the SOS and satisfy the Schrodinger equation in region 1
or 2, respectively, lead to the self-consistency requirement
that 1, (y) satisfy

/;dy’@(w,y;y’;E)ﬂh(y') =0 (3)
where

- K2
G(z,y;y; E) = —/ dy’'

2 Js

x| G1(0 y‘y"E)fZG (z,y;9"; E)

1\ 8 Y, an 2 19 Y
—G(z y'y"E)iG (0,y;9; E)
2 Y ) an 1\Y Y, )

and n is the outward-directed normal at point (0,y).
For points on the surface of section, it is straightfor-

ward to write the expression for G in the semiclassical

limit in terms of a sum over classical trajectories of one

Poincaré mapping:

1 825 |2

Iplll |pl| ayllayl

2T/ — 1
G5y B) = 3 ih(2miR)1/2

cl.tr.

X exp (%S(y",y';E) - zgv) .

A few more unilluminating steps transform the consis-
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tency condition (3) into
det(1-T) =0,

where T is given by Eq. (2).

Bogomolny also gives some of the properties of the T
operator, and proves them in the classical limit 2z — 0.
His most important of these subsidiary claims is that in
the limit A — 0 the T operator is unitary. This is, to be
sure, a strange sort of unitarity, in light of his other claim
that the dimension of T varies smoothly with parameters
(such as energy); specifically, he says that

dimT, =

(volume of allowed region on Poincaré surface)

(2nh) - (4

The mechanism by which these two phenomena coexist
will be examined in detail in the context of our numerical
experiment (Sec. IV C).

There are other interesting subjects covered in Bogo-
molny’s paper, such as the relationship between T and
the Selberg zeta function, and his prescription for com-
puting full quantum mechanical eigenfunctions; we will
not address those challenges in this paper, beyond pre-
senting computations of surface of section wave functions
predicted by the theory and comparing them to the exact
SOS wave functions.

B. Computing the T operator: Avoiding the
shooting problem

Each of the coordinate-space matrix elements of T
in expression (2) above is a sum over classical trajec-
tories of energy F which go from (0,y) to (0,y’) in one
Poincaré mapping. But to find these trajectories it would
be necessary to find all values of the initial momentum
P = (pcosf,psinf) that cause a trajectory launched from
y to next intersect the SOS at y'. Even though the mo-
mentum magnitude p = /2[E — V (0, y)] is fixed by the
choice of energy, one would still have to solve a shoot-
ing problem—a (numerical) search in 6 space to find the
launching angles which cause the particle to end up at
y'.

But this can be avoided. Consider: any properly cho-
sen surface of section has the property that every tra-
jectory eventually pierces it. As a function of initial
conditions (on the SOS), call the next crossing point
Y'(y, 0, E). It follows that every trajectory of the appro-
priate energy contributes to T'; if it starts at (0,y) with
angle 0, for example, it contributes to (Y'(y, 8, E)|T|y).
This observation suggests that we transform (2) from a
sum over end points into an integral over initial condi-
tions.

Executing the desired transformation is possible and
indeed straightforward. First we write a more useful
expression for the partial derivative which appears in
Eq. (2), being explicit about which variables are held
constant:

Sy, y)
Oyoy’

= [aiy' (8Sg/;,y)>ylEEJ
- [%(—py)]m

[on]..

ap Y1lyEXD

Here we use a subscript of “Y” to remind ourselves that
the surface of section is meant to be fixed during the
differentiation—in our case, z = ' = 0. The second line

follows from the well-known identity (8.5/ 9Y)y g = —Py-
As a function of initial conditions y and 6,

oy’ _ 6Y’(y,0,E)]
[ap‘y]yE‘E - [ Opy yET
_[ov] (e

B [W] yES [apy]yEE
_ 1 Joy’

5 [97.0e

Substituting into Eq. (2) and integrating out the basis
states on the left-hand side (LHS), we have

(2mﬁ)1/2 /dy/dy Z' =" |55

cl.tr.
xeiS/Mim 2y (] (5)

yEZ

6Y’ —-1/2

Now we notice that the sum over classical trajectories
that go from y to y’ in one Poincaré mapping is equiv-
alent to a sum over the discrete values 6; that solve the
shooting problem y' = Y'(y, 0;, E) for the present values
of y, ', and E. Schematically, we express that statement
with the following equalities, which hold no matter what
expression is inserted in the braces:

Sld=faszse-n )

_ 9Y'(y,0,E)
- ufprigan

6

yEX

x8(y' — Y'(y,0, E)) {}

7]

When we apply this identity to Eq. (5), the § function
allows us to do the y' integral immediately:

/2
1 12| Y (.0, B) |
= Gy [ 0 [ 0107 [F5 S
,0 T
e e ) LT P

The result is an expression for T which can be evaluated
without solving any shooting problems—a reduction of
numerical effort. Moreover, this expression more closely
represents our intuitive picture of the effect of 7' than
Eq. (2); that is, when T is applied to an initial surface of
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section wave function |¢),

(1) it breaks up |¢) into its components at each posi-
tion y;

(2) each of these components becomes an ensemble of
classical particles, launched in all directions 6;

(3) the particles follow the classical equations of mo-
tion (accumulating quantum mechanical phase as they
go) until they hit the surface of section again;

(4) the phases of the particles are summed together
(with a weighting factor) to yield the new SOS wave func-
tion |¢').

It is Eq. (6) which formed the starting point for our nu-
merical work.

Note that the partial derivative appearing in Eq. (6)
is not computed directly, but rather from elements of
the linearized tangent matrix, which can be computed
efficiently using techniques similar to those described
by Eckhardt and Wintgen [13] for computing the mon-
odromy matrix. [The slight difference is that the mon-
odromy (“once around”) matrix only applies to periodic
orbits, whereas we need to calculate stabilities at arbi-
trary times on nonperiodic orbits.]

C. Removing symmetries

Remember that the T operator as defined above gives
the evolution of a SOS wave function from one crossing
of the SOS to the next same-direction crossing. But one
might think that it would be also possible to write T as
the composition of two operators: a T, which performs
the evolution to the first crossing of the surface of sec-
tion (which is in the “wrong” direction), followed by a
T>, which performs the second half of the evolution (to
the second crossing, which is the first “proper,” same-
direction crossing; see Fig. 2). The proof of this fact is

J

Surface of

FIG. 2. Half Poincaré mapping trajectories which con-
tribute to 71 and T>. In the text it is shown that, to within a
stationary phase approximation, the transfer operator T' can
be written as the product of 77 and T2, each of which is a sum
over “half Poincaré mapping” trajectories on one side or the
other of the SOS, such as those drawn here. The stationary
phase approximation tells us that the strongest contributions
to the product will come from pairs of half trajectories that
join smoothly at the surface of section into a full-mapping
trajectory.

the subject of the present section; effectively, we need to
unravel the last part of Bogomolny’s derivation of the T'
operator.

The two operators T and T> are defined by expressions
exactly equivalent to Eq. (2), except that their sums are
over half Poincaré trajectories going from y; — y] and
Yy, — y4, respectively (see Fig. 2). We wish to show that
the product T>T; is equal to T'. The product contains a
§ function (y4|y;), which allows us to perform one of the
integrals immediately, yielding

928, y" y) 1/2 828, (y ) 1/2
T T d " 2
T o ’i/ Y / W / % Z 2 dy'dy" dydy’
y' =y y—y'
x e~ (vat)/2 exp — [Sz(y” v) + S1(v, )] v")(yl - (7)

We next do the 3y’ integration using the stationary
phase approximation; the only significant contribution
is when

=)
|

oy 15200 V) + 51,0y

= [_p;,y +p,1,y] ’ (8)

which requires that the final momentum of the first part
of the trajectory equal the initial momentum of the sec-
ond part—the trajectories must join smoothly. At those
points, the stationary phase approximation gives an ad-
ditional factor of

& (o o
a 72 [SZ(y Y ) +Sl(y 7y)]y y' E

—

in the integrand of Eq. (7).
It remains only to show that the new combined pre-
factor of Eq. (7) matches that of Eq. (2); i.e., that

825, 8%5,

8ydy' 8y'' 8y’ ; :{:azs(y”a y) (9)
&+ 552 dydy"

To this end we define the function Y’(y,y"”) which gives
the values of y’ for classical trajectories smoothly con-
necting y to y” in one Poincaré mapping. We then note
that Eq. (8) is valid for any values of y and y" as long
as we evaluate it at ¥y’ = Y'(y,y"”), and so we write that
equation’s derivatives with respect to y and y':
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828, 828, 8Y’ 8%8;

0= (ay'z * 6y'2> Byt ayoy (10)
828, 082S, Y’ 828,

o= (557 ) o oy O

In the current nomenclature, the action that enters the
expression for T is

S, y) =Sy, Y (5, ")) + S1[Y' (v, ¥"), 4] 5

we will need its second partial derivative, which we can
obtain using the chain rule and Eq. (8):
st(y”,y) _ 8251 8_)/’ 8252 ay’
Aydy" - Sydy' By dy"dy' By

bF oy | 8y dy" : (12)

(az S, azsz> oY’ 8y’

Using Egs. (8), (10), (11), and (12), it is trivial to

establish that the equality holds in (9) when the minus

sign is chosen. Therefore we have established that, to
within a stationary phase approximation,

T SEA T,

Thus T can be decomposed into “half Poincaré mapping
operators” T; and T3, as we hoped.

There will be a numerical efficiency gain from using
this decomposition for any chaotic potential, regardless
of symmetry, for the following reason. The computation
of T requires doing an integral over the initial conditions
y and 6. The integrand, however, involves functions such
as Y/(y,0), which is the point that a trajectory next in-
tersects the SOS. To get better than Monte Carlo qual-
ity convergence of the integral, these functions must be
sampled on a fine enough mesh that their variation as
a function of initial conditions is sampled. In a chaotic
regime, where nearby trajectories diverge exponentially
in time, the divergence of nearby half trajectories will be
roughly the square root of the divergence of full trajecto-
ries, and so, roughly, only the square root of the number
of mesh points will need to be used. Thus two coarser
meshes of half-length classical trajectories will be ade-
quate to compute T3 and T2, and then those operators
(in the form of matrices) can be multiplied to yield T'.
In fact, we suspect that the product T>T; will yield even
better estimates of the eigenvalues of the system due to
the fact that it is “one stationary phase approximation
closer” to the exact Feynman path integral underpinning
the semiclassical approximations.

We use the T>T; approach in our numerical compu-
tations below. In our case we realize an even more sig-
nificant increase in numerical efficiency when we use the
T>T; approach: because our potential is symmetric with
respect to reflection about the surface of section, T} = T5.
Therefore, in addition to the less dense mesh of trajec-
tories that need to be calculated, the second half of the
trajectories need never be calculated. Moreover, there is

no need to multiply T X T4; our criterion that 7' have
an eigenvalue of 1 is equivalent to the requirement that
T have an eigenvalue of +1 or —1. Analogously, Bogo-
molny’s condition det(1 — T') = 0 would become

det(1 — T?) = det(1 — T)det(1+T) =0.

The sign of the eigenvalue tells us the parity of the asso-
ciated eigenstate of the system with respect to reflection
about the SOS.

Formally this reduction to the fundamental domain is
equivalent to solving the half-domain problem with two
different boundary conditions: first with a soft wall at the
SOS, and second with a hard wall. The latter case is the
one that produces odd-parity eigenstates, as follows: each
trajectory has one reflection from the wall, and thus an
additional phase of 7 appears through its Maslov index;
this makes Thara = (—1)T1. In this picture quantization
occurs when Tharg has an eigenvalue of 1, so, as above,
these odd-parity states occur when T has an eigenvalue
of (—1).

Throughout the rest of the paper, we use the desym-
metrized transfer operator 7; in our computations, and
we drop the subscript.

It is interesting to comment that another stationary
phase approximation, similar to the one connecting 7" and
T>T,, would produce the Gutzwiller periodic orbit for-
mula, the better-known device for semiclassically quan-
tizing chaotic systems. From this vantage point it is easy
to conjecture that the transfer matrix approach, which
is “one stationary phase approximation closer” to Feyn-
man path integration than the periodic orbit formula,
will yield correspondingly better estimates of quantum
properties of the system than the trace formula for a
comparable amount of effort or a comparable number
of input classical trajectories. Unfortunately, the imple-
mentations of the two methods differ so completely that
comparisons based on “equal effort” will be tricky and
this conjecture will not be tested in the present paper.

D. Algorithmic complexity of method

The algorithm that needs to be followed to compute a
system’s spectrum follows from Eq. (6). We now give a
crude estimate of the computational effort required to get
the first N eigenstates of a d degree of freedom system
which has instability exponent A—more precisely, we give
the scaling of the effort with those quantities.

In character with the rest of this section, we will not
attempt to give a precise definition of A, except to say
that it should measure the “typical” separation of two
nearby orbits during one Poincaré mapping, as follows:

Y2 —¥'1| ~ e'\]ﬁz — 71 .

We ignore the common situation that the degree of clas-
sical chaos varies with excitation number N because the
nature of this interdependence is very system specific.
The Nth excited state has a de Broglie wavelength
which is < O(N~1/4), the estimate coming from count-



52 SEMICLASSICAL QUANTIZATION USING BOGOMOLNY’S . .. 395

ing the number of nodes that would fit in a container
with rigid walls. Computing 7T requires that enough clas-
sical trajectories be calculated to capture the dynamics
of the full energy shell with a resolution comparable to
the de Broglie wavelength of the Nth state. Thus, if the
trajectories are started from a mesh of initial conditions
with spacings in positions and momenta proportional to
A, we need

O(e*A) S O(N~Y4
SO
A S O(N~Ydem2) |

The mesh needs to include all trajectories of energy E
that start on the SOS, a surface of dimension (2d — 2).
This is thus also the dimension of the mesh of initial
conditions, so the number of classical trajectories that
need to be calculated is

O(A—2(d—1)) ~ O(N2(1—1/d)62)\(d——1)) .

Each trajectory must, in general, be integrated nu-
merically. The number of time steps necessary depends
on the details of the potential; a reasonable estimate is
that it also scales like the reciprocal of the mesh spacing,
O(A~1). Thus the computational effort of computing the
necessary trajectories is the number of trajectories times
the number of time steps per trajectory, or

O(A-—(2d—1)) ~ O(NZ—I/dez\(2d—1)) .

(It will be the case that the effort of updating the phase
space vector and stability matrix scale as a small constant
power of d, but that factor is negligible compared with
the other contributions.)

Then the T operator must be constructed from the
information about the trajectories. T operates on func-
tions on the spatial part of the surface of section; these
functions have (d — 1) dimensions—one fewer than eigen-
states of the full quantum system. In practice, the ma-
trix elements (n,|Ty|n2) will be calculated in some basis
fine enough to capture details the size of the de Broglie
wavelength, in (d—1) dimensions—that requires dim 7" ~
O(N'~1/4) basis states, so that T has the square of that
or O(N2?(1~1/d)) matrix elements. If T is to be calculated
in a generic basis, then each of its matrix elements needs
to be updated for each trajectory; a job of complexity
O(N*(1=1/4))e2A(d=1) " We can reduce this if we choose
trajectories and basis sets more carefully.

If the mesh of initial conditions is rectangular, the job
becomes somewhat easier because we can compute

Tlg)
for each initial ¥ as an integral over initial mo-
menta, and only then sum the whole row into the
T matrix; this optimization reduces the complexity to
0(N3(1—1/d)82A(d—1))‘
Even better is to choose to compute T in a position
basis (that is, positions covering the surface of section).

In this case, a particular trajectory only contributes to
a single matrix element of T (or at most a few, depend-

ing on the rounding scheme). Thus updating the T' ma-
trix need not take more than constant time for each tra-
jectory, and this part of the algorithm is reduced from
being fatally expensive to being almost incidental—only
O(N2(1—1/d)e2)\(d—1)) [14]‘

Next the 7" matrix needs to be diagonalized, with ef-
fort that goes with the cube of the size of the matrix,
O(N3(—1/d)y In this step Bogomolny’s method has
an advantage over a brute-force diagonalization of the
Hamiltonian, which requires a matrix with size O(N) and
effort O(N3).

Finally, o must be scanned to find parameter values
that yield eigenstates. This procedure requires O(N)
repetitions of each of the above steps.

A grand total of the computational effort required to
apply Bogomolny’s method incorporates all of the above
estimates:

(effort) ~ 0([@,2—1/.16,\(%-11+yz(1—1/d)62,\(d—11

calc trajectories upd::te T
+ N3(1—1/d) ] N )
diagonalize T' scan o
~ 0(N3——1/dek(2d—1) + N4—3/d) (13)

(the second line summarizes the terms that dominate in
different limits). Understanding this expression gives us
important information about the practicality of Bogo-
molny’s method.

First, the time needed to diagonalize the 7' matrix does
not dominate when calculating highly excited states of
two degrees of freedom systems; this is contrasted to the
case of matrix mechanics where diagonalizing the Hamil-
tonian is virtually all of the work. The reason is that the
T matrix is smaller than the Hamiltonian; it operates
on functions that have one dimension fewer than the full
quantum mechanical eigenstates so a smaller basis set is
adequate. However, for systems with more than two de-
grees of freedom, diagonalizing T is the dominant part of
the work of the algorithm; the advantage of smaller ma-
trix size is overtaken by the disadvantage that the matrix
must be diagonalized O(N) times.

Second, the effort of implementing the semiclassical
method increases with increasing chaos (), a fact that
should be obvious given that the method relies on classi-
cal trajectories. By contrast, the dependence of the effort
of a direct diagonalization of H on A is less clear. “Effi-
ciency” in the diagonalization approach is a function of
the number of excess basis states which must be included
in the basis to get the desired number of eigenenergies to
converge. This in turn is determined by how well the en-
ergy surface of the system can be matched by the energy
surface of a useful basis. It often occurs that systems with
a higher degree of chaos have more complicated energy
surfaces, for which it is harder to choose a good basis.
However, this behavior is not universal, so comparison
of efforts as a function of degree of chaos can only be
undertaken on a case-by-case basis.

Third, comparing expression (13) against the matrix
mechanical result of O(N3), we see that Bogomolny’s
method should be faster than matrix diagonalization at
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getting high-V states when d = 2, comparable when d =
3, and poorer for d > 4.

E. Searching for eigenclassicities instead of
eigenenergies

So far we have been coy about specifying what we mean
by the parameters denoted by . In fact, a can repre-
sent any external parameters that enter the Schrodinger
equation—F, A, or parameters affecting the form of the
Hamiltonian itself. The key point is that the quantiza-
tion condition (1) is not attainable for arbitrary parame-
ters; it can only be satisfied when there happens to be an
eigenstate at that choice of parameters. So T, can only
show the presence or absence of a quantum eigenstate
(by respectively having or not having an eigenvalue that
equals unity) at the one particular point in parameter
space at which it was computed. This is why we need to
compute T, many times, for various selections of «, in
our search for eigenstates of the system.

Normally one would vary only E, in which case unit
eigenvalues of Tg mark eigenenergies of the system and
the usual energy spectrum is produced. However, it
should be clear that it is also possible to fix E and vary
some other parameter of the problem. One can even vary
several of the parameters simultaneously.

In fact, if one varies several parameters simultaneously,
while at the same time keeping them in a carefully cho-
sen relationship to one another, one can arrange that
the classical trajectories are left unchanged (or maybe
trivially rescaled) despite the change. Scalable potentials
(such as billiards) show a particularly simple version of
this effect—the classical trajectories scale trivially as the
energy itself is changed. If we find such a scaling com-
bination of parameters, we will only need to compute
a mesh of classical trajectories once, then reuse them
as necessary to calculate T for many parameter values.
Thus we would be able to find many eigenstates (albeit
not members of a single energy spectrum) from a sin-
gle set of classical trajectories. Having to compute only
a single set of trajectories, rather than a separate set
for each eigenstate to be found, significantly reduces the
work necessary to verify Bogomolny’s method.

Treating Planck’s constant as the variable parameter
has the desired effect. (Any reluctance to vary one of
nature’s fundamental constants can be circumvented by
noting that this operation is equivalent to varying other
parameters of the problem in synchrony. Details are
given in the Appendix.) Clearly Planck’s constant has
no effect on the classical trajectories; one set of them can
be calculated and then used to calculate T for any value
of A.

In fact, it is useful to think of 1/7 as the problem’s clas-
stcity. Increasing the classicity at constant energy short-
ens the particle’s de Broglie wavelength; this, in turn,
allows more “nodes” to fit on the energy shell, so that
more highly excited, more “classical” eigenstates result.
In the sense that states of higher classicity (everything
else held constant) have higher excitation numbers, clas-
sicity is analogous to energy, and it helps to think of it as

a kind of pseudoenergy—though beware that the anal-
ogy is not exact (for example, eigenstates of classicity at
fixed energy are not orthogonal to one another).

In our numerical experiment outlined in Sec. IV, we
use this trick. We search for eigenstates of fired energy
and variable classicity, producing an eigenclassicity spec-
trum for the system. In effect we are able to enjoy the
computational leverage that is usually associated with
scalable potentials, but without having to limit ourselves
to a (nongeneric) scalable potential. Moreover, this trick
allows us to change independently the two parameters
that are expected to affect the performance of the semi-
classical algorithm: E (which sets the degree of chaos)
and 1/A (which sets how close we are to the semiclassical
limit).

III. COMPUTING EXACT EIGENCLASSICITIES

To evaluate the accuracy of Bogomolny’s method for
calculating approximate eigenclassicities, it was neces-
sary to compute the exact eigenclassicities of our system
for reference. This section contains a brief description
of that computation, preceded by some comments about
the eigenclassicity problem in general.

Solving the quantum eigenclassicity problem is a bit
more complicated (or at least more unfamiliar) than solv-
ing a quantum eigenenergy problem. The latter is given
by the familiar equation

H|¥,) = E;|T,) . (14)

| ) represents a full, quantum mechanical wave function,
and is to be distinguished from |¢), which represents a
surface of section wave function like the ones operated on
by the T operator. After some complete set of basis states
{|n}} is chosen, and the matrix elements (n|H|n') are
computed, the problem reduces to an eigenvalue (matrix
diagonalization) problem,

> (nlH|n')(n'|¥:) = Ei(n|¥;) .

On the other hand, the eigenclassicity problem, even
for a Hamiltonian that is equal to kinetic energy plus
potential energy, takes a different form. One must rear-
range Eq. (14) to isolate 1/A. To do this, we must “look
inside” H:

1
H=Y" 5 (Fk:)* + V(@)
=mRK+V,

where k; are the wave numbers p; /A associated with the
momenta, and K = 1 " k? is a reduced kinetic energy
in terms of wave numbers. In terms of those quantities,
the eigenclassicity equation is

2
ke = (5) E-VIw). (15)

Here FE is taken to be constant, and we look for the dis-
crete values of the classicity 1/4;, and nonzero eigenvec-
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tors |¥;), for which the equation holds. Since the wave
vectors on both the left and the right sides of the equal-
ity are multiplied by operators, this results in a general-
ized eigenvalue problem. In some basis, the problem that
needs to be solved is

Sl )19 = (5) T olE =Vl o]

n'

(16)

The eigenvectors corresponding to different eigenclas-
sicities are not orthogonal in the usual way; instead of
satisfying (¥;|¥;) = d;;, they satisfy (¥;|K|¥;) = d;;
and (¥;|(E — V)|¥;) = &;;. Also note that the opera-
tor (E — V) is not positive definite, and in fact (1/k)2
can possess negative solutions (though of course only the
positive solutions are physically meaningful).

The advantage of changing Planck’s constant rather
than the energy is that the degree to which the system is
quantum mechanical or classical is a parameter that can
be adjusted without changing the classical dynamics of
the system. At constant energy, states of higher classic-
ity are more highly excited in the sense of having higher
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FIG. 3. Energy eigenfunctions vs classicity eigenfunctions
for the 1D harmonic oscillator H = §p2 + %a:2. Each plot
shows the ground state and the 4th and 24th excited states.
(a) Energy eigenfunctions (calculated at fixed & = 1) get wider
as the number of excitations increases, because the energeti-
cally allowed region grows. (b) Classicity eigenfunctions (cal-
culated at constant E = %), on the other hand, all have the
same classical turning points, and states of lower excitation
number turn out to be able to tunnel further into the classi-
cally forbidden region.

quantum numbers and more complicated nodal patterns.
They do not tunnel as well into classically forbidden re-
gions of phase space. They can be made more compact.
In all of these senses, states of higher “classicity” are
more classical than states of lower classicity—hence the
choice of the name. To illustrate these properties, Fig. 3
shows a few eigenenergy states of the one-dimensional
harmonic oscillator, and contrasts them to the analogous
eigenclassicity states.

Since our semiclassical computation produced predic-
tions of eigenclassicities, we needed to compute exact
quantum eiganclassicity spectra of the Nelson, poten-
tial for comparison, in the manner described above. We
used a basis of 2D harmonic oscillator wave functions de-
formed to follow the parabola y = %:1:2. (The method
is the same as that used in Ref. [15]).) In this basis the
matrices of interest are banded. We optimized the hor-
izontal and vertical scale lengths of the basis functions
until each diagonalization could be done with a basis of a
few thousand functions. Finally, we checked the validity
of the diagonalization by comparing the resulting spec-
tral staircase to the Thomas-Fermi smoothed staircase,
and using only states significantly below the classicity at
which those curves diverge. This procedure yields eigen-
classicities that are accurate to a small fraction of the
mean level spacing in the range of interest.

We will henceforth call the computed quantum me-
chanical values the “exact” values—not in reference to
their numerical virtues, but rather because they are com-
puted on the basis of an ezact theory—as opposed to a
semiclassical approximation.

IV. NUMERICAL EXPERIMENT

A. The model system

We applied Bogomolny’s method to the case of a par-
ticle moving in a smooth nonlinear oscillator with Hamil-
tonian

1 1 1 2

H = —2-(pi+p§)+§w2w2+§ (y—%mz) .
Aside from a minor rescaling of variables discussed in the
Appendix, this system is identical to the “Nelson” po-
tential studied by Baranger and Davies [11] and Provost
[15]; to eliminate confusion we will refer to our rescaled
potential as “Nelson,.” We fixed the value of w? = 0.05
(the same value as used by those authors), and used the
y axis as our surface of section.

The system is an anisotropic harmonic oscillator elon-
gated along the z direction which has been bent up along
the parabola y = %mz; some contour lines of this poten-
tial are shown in Fig. 4. The system has a rich periodic
orbit structure [11] and is bound at all energies. As en-
ergy is increased the particle explores more and more
of the curved “horns” and the motion becomes increas-
ingly chaotic. The Thomas-Fermi classical estimate of
the number of even and odd states for our potential, in-
cluding corrections up to O(A?), is given by [15]
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FIG. 4. Some contours of the Nelson, potential. The two
solid contour lines are for the energies £ = 0.004 and E = 0.2,
which were chosen for the numerical experiments; the former
is mostly regular, while the latter is mostly chaotic. The
surface of section used was the y axis.

N[< Eor < (1/h)]

E 12

E? w R [w?24+1 1
= o {u: [ I +w2E]}, (17)

the plus and minus correspond to the expressions for
even- and odd-parity states, respectively. To first order
the number of states increases quadratically with both
energy and classicity.

We computed eigenclassicity spectra for two different
values of energy: E = 0.004, where the system is predom-
inantly regular; and E = 0.2, where it is predominantly
chaotic. Parameters of that computation are summa-
rized in Table I. For the two energies we calculated all
of the eigenclassicities, of both parities, in the ranges
0 < (1/h) < 4000 and 0 < (1/h) < 80, respectively; a
total of 574 and 572 states falls in those ranges. Details
are contained in the following sections.

B. The semiclassical eigenclassicity spectrum

In applying Bogomolny’s method, we took advantage
of the potential’s mirror symmetry about the y axis by
using the T operator associated with half Poincaré map-

ping trajectories, as discussed in Sec. IIC. Thus eigen-
states of the system are expected to occur at values of
1/k for which T has an eigenvalue of +1. The set of half
trajectories that we used were started on a rectangular
mesh of initial conditions in the allowed (y, #) plane, with
735 x 735 trajectories for E = 0.004, and 945 x 945 tra-
jectories for F = 0.2.

We calculated T' as a matrix in a basis composed of
simple harmonic oscillator eigenfunctions on the y axis
(remember the basis need only be complete on the sur-
face of section). The length scale of the basis functions
was chosen such that they would be solutions to the
Schrédinger equation that would apply to motion on the
y axis,

KZ d2
(-Fa +57) -0 =1 (n43) 0utw),

with A chosen to correspond to the classicity used in
that particular T' calculation; thus the basis states vary
smoothly with classicity. The number of basis states
needed throughout was only 36.

To extract the curves of eigenvalues of T as a func-
tion of 1/A which will be shown below, it is necessary
to deduce which eigenvalues at two adjacent values of
classicity are connected on the same eigenvalue curve.
(This was the most tricky part of the implementation of
Bogomolny’s method.) Our driver computer program ac-
complishes this association by looking for unambiguous
nearest neighbors in the two sets; whenever there is am-
biguity, the program fills the gap by calculating a new
set of eigenvalues at an additional classicity between the
first two. The process repeats until all associations are
unambiguous; thus the curves below are reconstructed
and plotted faithfully and in full detail.

C. T operator eigenvalues—qualitative observations

Much of the discussion of our numerical results concen-
trates on the properties and behavior of the eigenvalues
of the T operator as a function of classicity (1/%). Re-
call that T and its eigenvalues can be computed for any
value of classicity, so the eigenvalues trace out continuous
curves as the classicity is varied. Figure 5 shows exam-
ples of such curves in the complex plane, for each of the
two energies. In order to see the behavior of the eigenval-

TABLE 1. Parameters for semiclassical computations of eigenclassicities of the Nelson, potential.
In order to reproduce the T operator eigenvalue curves accurately, many times more T diagonal-
izations were done than would have been needed only to isolate the eigenclassicities. Also, the
number of trajectories used for the regular regime computation was considerably higher than actu-

ally needed.

Energy 0.004 0.2
Classicity range 0-4000 0-80
No. of states in range (even and odd parity) 574 572
No. of classical trajectories used 735 x 735 945 x 945
No. of basis states used 36 36
No. of T' diagonalizations done 3845 9188
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ues as the classicity is varied, it is necessary to “unroll”

the curves. Figure 6 does this, showing the magnitudes
of all of the eigenvalues, as a function of classicity.

At any choice of parameters, T has two relatively well-
defined classes of eigenvalues: those near the unit cir-
cle in the complex plane and those near the origin. In
the following discussion we denote them as “class 1”
and “class 0” eigenvalues, respectively. The separation
of eigenvalues into these classes turns out to be an im-
portant feature of Bogomolny’s method, and will be dis-
cussed in detail below.

The general behavior of the eigenvalues is as follows.
At very low classicity, all of the eigenvalues are located
in a cloud near the origin (in class 0). As the classic-
ity is increased (corresponding to higher excitations of
the quantum system), they spiral out, one by one, from
the origin to an annulus near the unit circle (in class 1).
Thereafter, they remain near the unit circle, continuing
to rotate counterclockwise. The behavior of the eigenval-
ues can be seen in Fig. 5.

FIG. 5. Typical eigenvalue curves in the complex plane.
Plotted are the curves that two typical eigenvalues follow
as the classicity (1/Ak) is scanned. The eigenvalues remain
near the origin until the classicity reaches a certain threshold
(which is different for different eigenvalues of T'), at which
time they begin to spiral out to the unit circle. After that
point, each time they cross the positive or negative real axis,
Bogomolny’s theory predicts that the quantum system should
have an even- or odd-parity eigenstate, respectively. Energies
are (a) E = 0.004; (b) E = 0.2. In each case, the fourth
T-operator eigenvalue to move from the origin to the unit
circle is plotted.

1. The unitarity and dimension of T

Bogomolny shows that, in the limit # — 0 and for y and
y' on the classically allowed part of the surface of section,
T is unitary in the sense that (y'|T1T|y) = §(y' —y). The
dimension of the “unitary part” of T, however, is finite,
and is given by Eq. (4). When Eq. (4) is evaluated for
the Nelson, potential, it gives the prediction that

. 1
dm7 =F 5
To the extent that the eigenvalues separate into classes as
mentioned above, then the number of class 1 eigenvalues
at any given value of parameters is given by Eq. (18).
This prediction is tested in Fig. 7—the staircase func-
tions are a count of the number of eigenvalues that have
migrated to class 1 (more precisely, what is plotted is
the number of eigenvalues that have predicted a quan-
tum eigenstate).

This does not mean, however, that the T" matrix needs
to be computed in a basis of this size, which would require
a manual truncation. Rather, T can be computed in a
basis of arbitrarily large size, and the number of class 1
eigenvalues will obey Eq. (18) automatically. The rest

(18)

1.4

=y 1.2

(o]

1S 1

5 os

4

z 0.6 ‘

g 4

2 0.4 >

4 o

L 02/ =
===

o] 500 1000 1500 2000 2500 3000 3500 4000
classicity

=}

©

£

[

=2

©

>

c

[

R

@

-

0 10 20 30 40 50 60 70 80
classicity

FIG. 6. Magnitudes of the T-matrix eigenvalues as a func-
tion of classicity (classicity is defined to be the reciprocal
of the value of scaled %A, and characterizes the transition
quantum — classical). As the classicity is increased, eigen-
values move, one by one, from the origin towards the unit cir-
cle. Squares are plotted at those points where the eigenvalues
have phases of 0 (candidates to be even-parity eigenstates),
triangles at phase w (odd eigenstates). The symbols are plot-
ted solid for those candidates which turn out to be associ-
ated with true eigenstates of the quantum system (“class 1”
eigenvalues), and open for all others (“class 0” eigenvalues).
(a) E = 0.004, which is in the classically regular regime.
(b) E = 0.2, which is in the classically chaotic regime. The
horizontal axes are scaled such that the Thomas-Fermi densi-
ties of states in the horizontal directions are equal for the two
energies. The plots predict the first 574 and 572 eigenstates,
respectively, of the full quantum mechanical system.
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of the eigenvalues—an infinite number of them—remain
in a cloud near the origin in class 0, where they do not
affect the subsequent predictions. Correspondingly, a dif-
ferent, continuous measure of the dimension of T' can be
defined which does not require a truncation or a counting
of class 1 eigenvalues:

dimT = Tr 7T . (19)

This expression can be applied to computed T matrices,
and it reflects the fact that the dimension varies contin-
uously with classicity. This measure is also plotted in
Fig. 7. As can be seen, the agreement is quite good,
even for low classicities. It is also noteworthy that the
dimension varies even more smoothly than the curves of
the individual eigenvalue magnitudes (Fig. 6); this is be-
cause variations in the magnitude of one eigenvalue tend
to be negatively correlated with variations in those of
another.

2. Finding the quantum spectrum from T eigenvalues

Recall that the criterion for an even eigenstate of the
system is that T have an eigenvalue equal to 1 (for brevity
we temporarily ignore the odd-parity eigenstates that
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FIG. 7. Two notions of the dimension of the unitary part
of the desymmetrized T operator are plotted as a function
of classicity, for (a) E = 0.004, (b) E = 0.2. The staircase
is a count of how many of the eigenvalues have predicted a
quantum eigenstate up to that point (roughly, the number
of eigenvalues near the unit circle). The solid curve shows
Tr T'T, which is a continuous measure of the dimension of
T. The dashed line shows Bogomolny’s theoretical prediction

[Eq. (18)].

occur at eigenvalues of —1). Of course, Bogomolny’s
method is a semiclassical approximation, which always
entails the use of a stationary phase approximation to
the exact Feynman path integral. Thus we should not be
surprised that although the eigenvalues come near 1, they
never exactly equal 1. Therefore, a more robust criterion
is needed than “equality to 1.”

What is clear is that quantum eigenstates should only
be associated with class 1 eigenvalues—the eigenvalues
that have magnitudes of approximately unity. As the
classicity is increased, these eigenvalues rotate counter-
clockwise along the unit circle. On each rotation they
pass close to 1 and “generate” an eigenstate. Leaving for
later the subtleties of determining exactly which eigen-
values are in class 1 and which are class 0, we still need
to decide at exactly which point during the rotation of
a class 1 eigenvalue the eigenstate is predicted to occur.
At least three possible criteria suggest themselves:

(1) the point at which det(1 — T') = 0 is most nearly
fulfilled;

(2) the point where a class 1 eigenvalue closest ap-
proaches 1; and

(3) the point where a class 1 eigenvalue crosses the
positive real axis (has a phase of 0).

Although criterion 1 is the one emphasized by Bogo-
molny, it turns out to be unsatisfactory. The determinant
mixes together information about all of the eigenvalues of
T, whereas eigenstates are each associated with a single
eigenvalue of T'. Therefore, the minima that are supposed
to indicate eigenstates are sometimes obscured, some-
times overlapping (and therefore indistinguishable), and
often not very close to zero. Figure 8 shows all of these
effects. For the low-lying states, the minima do corre-
late reasonably well with the eigenstates of the quantum
system, though there are already a few exceptions. How-
ever, for the highly excited states (here around n = 275),
the association is dramatically degraded. There is clearly
little hope of making unambiguous predictions (let alone
accurate ones) of highly ezcited eigenstates of the quan-
tum system based on a plot of |det(1 —T)|.

Criteria 2 and 3 produce results that differ only very
slightly from one another. Criterion 3 is more robust
than 2 and, we believe, more appropriate; therefore in
our search for even-parity eigenstates we concentrate on
those points where the T" operator has a class 1 eigenvalue
with phase = 0. (Odd eigenstates are similarly found
where a class 1 eigenvalue has phase = 7.) Accordingly,
in Fig. 6 we have placed symbols on the curves whenever
the eigenvalue crosses the real axis: squares and triangles
mark the points where the eigenvalues have phases of 0
or 7, and which are thus candidates to be even or odd
eigenstates, respectively.

It is important to emphasize that there is no ambigu-
ity at all in the recipe for finding places where an eigen-
value crosses the real axis. Through the course of our
numerical explorations, we found that the eigenvalues’
phases increase monotonically as the classicity was in-
creased, except for a very few, brief exceptions. Since T
can be computed and diagonalized at any value of classic-
ity, this means that any simple scheme suitable for find-
ing a bracketed zero of a continuous function suffices to
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FIG. 8. |det(1 — T')| versus classicity. The determinant of
(1 —T) is supposed to equal zero whenever the quantum me-
chanical system has an even eigenstate. Since the determinant
is complex, we plot its magnitude as a function of classicity
(the solid line) and indicate the exact eigenvalues with verti-
cal dashed lines. Shown are the lowest 19 even eigenstates for
(a) E = 0.004, (b) E = 0.2; and about 25 eigenstates around
the 275th even eigenstate for (c) E = 0.004, (d) E = 0.2. Al-
though the minima match up reasonably well for the low-lying
states, there is clearly little predictive power in the semiclas-
sical determinant for highly excited states. We shall see that
monitoring individual eigenvalues of T works better.

pinpoint the classicity at which a T' operator eigenvalue
crosses the real axis of the complex plane.

Having now located all of the phase = 0 points, it
remains only to be determined exactly which of those
candidates correspond to true quantum states. Equiva-
lently, what we need is a criterion for sorting eigenvalues
into class 1 and class 0. How close to 1 do the eigenvalues
need to be?

To investigate this question, we used our knowledge of
the exact spectrum to determine which of the candidates
matched true states. Thus a posterior: we were able to
classify candidates accurately as class 1 (corresponding
to a true quantum state) or class 0 (not associated with
a quantum state). (In Fig. 6, the associated symbols are
plotted solid if they are in class 1, open if class 0.) But
more importantly we would like to use our experience to
describe how class 1 eigenvalues could be distinguished
from class 0 eigenvalues a priori in a purely semiclassi-
cal calculation, without the benefit of knowing the exact
answers.

The first criterion is, of course, the magnitude of the
eigenvalue when it crosses the real axis. In the semiclas-
sical limit, class 1 eigenvalues are all supposed to have
magnitude 1, and class 0 eigenvalues magnitude 0. At
the finite classicity of our experiments, there is consider-
able deviation from that ideal, as shown in Fig. 9. While
it is true that the eigenvalues tend to cluster around ei-
ther the origin or the unit circle, the bands are pretty
wide. Does the width of the bands cause practical prob-
lems?

In the regular regime, it sometimes does: there is a
range of magnitudes, around 0.475-0.55, in which both
class 1 and class 0 eigenvalues occur. In this overlap
area, magnitude information is not sufficient to classify
the eigenvalues. Fortunately, only a few percent of the
eigenvalues fall into this uncertain range; the rest are
predicted unambiguously by Bogomolny’s method. Even
in this range, it is likely that in many cases one could

(b)
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FIG. 9. The separation of eigenvalues into class 0 and
class 1. Plotted is the distribution of magnitudes of
T-operator eigenvalues which cross the (positive or negative)
real axis. The shaded part of the histogram contains class 1
crossings, which are associated with true quantum eigen-
states; the unshaded part class O crossings. (a) E = 0.004. In
this (regular) regime, there is a transition region around mag-
nitude 0.5, in which class 0 and class 1 eigenstates are both
present and thus difficult to distinguish by magnitude alone.
(b) E = 0.2. In this (chaotic) regime, the two classes are well
separated and class 1 eigenvalues can easily be identified by
their larger magnitudes. Note that in both cases there are an
infinite number of class 0 crossings near zero magnitude.
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tell which of the ambiguous eigenvalues need to be in-
cluded in class 1 by looking for deficits in the semiclassi-
cal staircase as compared to the Thomas-Fermi smoothed
spectral staircase function, or deviations of the staircase
dimension of T' (as in Fig. 7) from the semiclassically
expected result.

In the chaotic regime, the width of the bands causes no
problem: it is still easy to distinguish class 1 from class 0
eigenvalues, because of the large gap separating them. In
our experiment in the chaotic regime, no class 0 eigenval-
ues had magnitudes above 0.4, and no class 1 eigenvalues
had magnitudes below 0.65. This fortuitous circumstance
is not only the result of the eigenvalues’ spiraling quickly
from the origin to the unit circle; even a quick motion,
if it occurred near a real-axis crossing, would cause trou-
ble. The other important, and more surprising, property
is that the eigenvalues all spiral out along a relatively nar-
row band in the lower complex half plane, and the entire
journey is completed in less than the time it takes for half
a rotation around the origin (see Fig. 10). As a result,
there is no ambiguity whatsoever about the semiclassical
method’s predictions for the location of eigenclassicities
in the chaotic regime. This is so important and unex-
pected that it deserves to be emphasized: in the chaotic
regime, Bogomolny’s method plus our criterion yield pre-
dictions of every single line in the quantum spectrum,
with no spurious predictions whatsoever. This reliabil-
ity is in contrast to that of other semiclassical methods,
which frequently fail to resolve adjacent eigenstates and
thereby leave doubt even about the number of eigenstates
in a spectrum.

Altogether, the first 574 eigenstates in the regular

Im(t)

Rel(t)

FIG. 10. T-matrix eigenvalues in the complex plane, for
E = 0.2. This figure is similar to Fig. 5, except that all of the
eigenvalues of T are shown on the same plot. The striking
feature revealed is that all of the eigenvalues spiral from the
origin to the unit circle along a single band in the lower half
of the complex plane. Within that rotation of m rad, they
manage to make it all the way from class 0 to class 1; during
their brief transition, they are away from the real axis and so
do not produce crossings of uncertain class.

regime, and the first 572 eigenstates in the chaotic regime
(in each case, some even, some odd parity) are repro-
duced by the data. The accuracy of the semiclassical
predictions will be discussed in Sec. IV D, after a few
more qualitative observations.

3. Quantum numbers from the semiclassical data

Each class 1 eigenvalue of the T operator produces
many eigenstates, one each time it rotates through the
real axis. Consequently it is possible to separate the
eigenstates into groups, based on which T operator eigen-
value each one is associated with. In Fig. 6, eigenstates
on a particular eigenvalue curve thus can be considered to
be members of the same group. Although the groups are
well defined in both regimes, they are truly meaningful
only in the regular regime.

For the mostly regular energy E = 0.004, the system is
nearly an anisotropic harmonic oscillator, so it is nearly
separable into z and y motions. Eigenstates of the system
can therefore be labeled by two “almost good” quantum
numbers, n; and n;, which count the number of excita-
tions along and perpendicular to the surface of section,
respectively. The near separability is the reason that the
eigenvalue curves in the regular regime are so smooth and
unkinked; and the quantum numbers can be read off the
picture as well. All of the eigenstates on the first eigen-
value curve have n; = 0—that is, they have no excita-
tions in the vertical direction; those on the second curve
have n; = 1; on the third curve, n; = 2; etc. Meanwhile
n,, can also be read off the diagram: the first eigenstate
on a particular curve has n), = 0; the second, n, = 1;
etc.

For the mostly chaotic energy E = 0.2, however, the
system is far from separable, and it has no set of good
quantum numbers. The eigenstates still lie on contin-
uous curves, but now the curves are kinked and bent
whenever two eigenvalues approach each other in the
complex plane. We see evidence that each interaction
of two curves is accompanied by an intermixing of the
eigenstates’ properties in the same manner as happens at
“avoided crossings” of energy levels, seen when a quan-
tum mechanical system’s external parameter is scanned
adiabatically. So although the eigenstates are still con-
nected by eigenvalue curves, the eigenstates lying on a
single curve do not necessarily have similar properties,
and the grouping by curves is not helpful.

D. Accuracy of eigenclassicity spectra

We have now outlined all of the steps necessary to
compute the eigenclassicity spectrum predicted by Bo-
gomolny’s quantum surface of section method. In order
to check its accuracy, it was necessary to decide, for each
of the semiclassically computed eigenclassicities, which of
the exact eigenclassicities it was “trying to predict.” This
we did manually by comparing the two spectra; usually
the eigenstates lined up so well that the correlation was
obvious. When two states were very close to one another,
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the further step of comparing the exact and semiclassical
surface of section wave functions was taken; this almost
always made it obvious how to match up the numbers.
Figure 11 shows the errors of the semiclassical approx-
imation as a function of classicity, for the two energy
values. Figures 11(a) and 11(b) are scaled so as to be
directly comparable to one another, in the sense that
the vertical and horizontal axes are scaled in propor-
tion to the respective Thomas-Fermi densities of state for
the two energies. Each symbol on these plots represents
an eigenclassicity predicted by Bogomolny’s method; its
vertical position shows the amount by which the semi-
classical prediction differed from the exact value. In
Fig. 11(a), line segments connect eigenstates that are as-
sociated with the same T-matrix eigenvalue; this was not

6 T T . . . . i
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FIG. 11. Errors in the semiclassical eigenclassicity spec-
tra. The discrepancy between the semiclassically predicted
eigenclassicities and the exact values (obtained by diagonal-
izing the Hamiltonian), for (a) E = 0.004 and (b) E = 0.2.
Squares represent even-parity states; triangles, odd. In (a),
lines connect eigenstates that are associated with a common
eigenvalue of T and which thus have in common the approx-
imate quantum number n;. Corresponding connections are
not made in (b) because in this chaotic regime associations
of eigenstates do not form anything resembling continuous
curves. The dashed curve shows the rms error smoothed over
small neighborhoods in classicity; note that it seems to remain
roughly constant as the system becomes more classical.

done in Fig. 11(b) for the reason mentioned at the end
of the previous section (for that same reason, connecting
them would not result in smooth curves, but rather in a
tangled jumble).

We have already discussed some differences between
the regular and the chaotic regimes—that when the sys-
tem is classically chaotic it is somewhat more effort to
calculate T, but somewhat less difficult to distinguish
class 1 from class O eigenvalues. Now we ask: how ac-
curately does Bogomolny’s method predict eigenclassici-
ties in the two regimes? From our numerical experiment
it appears that the semiclassical method does not care
about the degree of classical chaos; at least in this ex-
periment, eigenstate positions are approrimated by Bo-
gomolny’s scheme just as well in the classically chaotic
regime as in the classically regular regime.

Note also that the worst and rms average errors seem
to be roughly constant at all classicities—high ezcitation
states’ positions are approzimated just as well as low ex-
citation states’. Moreover, when one follows individual
curves in Fig. 11(a) (the nearly separable regime), one
sees that individually the errors along any one curve
seem to be decreasing towards zero. Remembering from
Sec. IV C 3 that the eigenstates along a given curve share
the same n, quantum number and have increasing 7,
quantum numbers, it seems that, at least in the regular
regime, the semiclassical predictions are better for states
which have more excitations transverse to the surface of
section, but roughly constant regardless of the number of
ezxcitations along the SOS.

Why might this be? We suggest that it is a result of
the method’s semisemiclassical nature: the propagation
of a wave function transverse to. the surface of section
is done semiclassically, and therefore improves when the
number of excitations in that direction increases. The
motion along the SOS, on the other hand, is effected
(conceptually) by matrix multiplications, which are not
dependent on the semiclassical approximation.

One can argue that efforts to find an analogous corre-
lation (between errors and excitations along or perpen-
dicular to the SOS) in the classically chaotic regime are
doomed to failure because of the lack of even approxi-
mate quantum numbers. Not entirely satisfied by that
argument, we sought such a correlation anyway, but so
far without success.

The above comments refer to the absolute errors (in
units of 1/A) of Bogomolny’s method in approximating
the eigenclassicities of a quantum system. Figure 12
shows to what extent the method is able to meet a
more exacting standard—the ability to resolve individ-
ual eigenstates. There are theoretical reasons to believe
that no semiclassical approximation which is correct only
to first order in % will be able to resolve highly excited
eigenstates of a generic system with more than one de-
gree of freedom: the density of states increases more
quickly than the semiclassical approximation can hope
to converge. The ability of a method to resolve indi-
vidual eigenstates is measured by dividing its errors by
the system’s mean level spacing. When this quantity ap-
proaches 1, nearby features of a spectrum can no longer
be separated reliably.
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Figure 12 shows this ratio for our system. The mean
level spacing decreases like the reciprocal of the classicity,
thereby “raising the standard” against which the approx-
imations are judged. It is seen that Bogomolny’s method
is a victim of the usual problem: the ratio of error to
desymmetrized level spacing increases as the classicity is
increased, so it will never be able to single out spectral
features at very high excitation number. Still, the prob-
lem has a relatively slow onset—the worst error ratios are
just creeping up towards 1 after hundreds of eigenstates
have been predicted accurately.

E. Calculating surface of section wave functions

The eigenstates of the T' operator are the values of
the quantum mechanical wave function on the surface of
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FIG. 12. Semiclassical errors in units of the mean level
spacing. (a) E = 0.004; (b) E = 0.2. Unfortunately,
the rough constancy in the absolute errors demonstrated in
Fig. 11 means that, due to the increasing density of states
of the quantum system, the semiclassical errors as a fraction
of the mean level spacing, shown here, increase with increas-
ing classicity, eventually preventing the resolution of individ-
ual eigenstates semiclassically. Nevertheless, after predicting
nearly 600 eigenstates in each case, the worst semiclassical
errors have yet to quite reach one mean level spacing, and the
rms averages (the dashed curves) less than half that.

section. That is, if
¥(z,y) = (z,y|¥)

is the 2D quantum wave function, then to within a nor-
malization

¥(v) = (yl¥)
x ¥(0,y) .

Odd-parity surface of section eigenstates (which are zero
on the SOS) can also be found—intuitively, by moving
the surface of section an infinitesmal distance dz from
the y axis:

Podd(y) ox ¥(dz,y)
. 0¥ (z,y)
oz

z=0

As usual, the eigenvalue problem only gives us the
semiclassical wave functions to within a complex prefac-
tor. Naturally we choose the magnitude of this prefactor
to normalize the vector to 1, but there is still a complex
phase that needs to be determined.

Since ideally a phase could be chosen to make the SOS
wave function pure real, it is sensible to choose the phase
so as to minimize the imaginary part. Specifically, we try
to minimize

1= [ ayftm )P
Conveniently, this integral need never be done. Assuming

that |n) is an orthogonal complete basis, and that (y|n)
is always real, the required prefactor phase is simply

(20)

Since we store the SOS eigenfunctions in such a basis,
only the sums appearing in (20) need to be done and
no integrals. It turns out that, after this best phase is
chosen, the SOS wave functions indeed turn out to have
only small imaginary parts.

A sequence of semiclassically predicted surface of sec-
tion wave functions is plotted in Figs. 13 and 14, along
with their exact counterparts. In each energy regime,
six such plots are presented, at equivalent parts of their
spectra (around the 230th eigenstate, which is about the
115th eigenstate of a particular parity). The eigenstates
were not specially selected, and are typical of other eigen-
states that we looked at. The three curves plotted in
each set are (1) the exact [¢(y)]?, which is necessarily
real; (2) the semiclassically predicted |4 (y)|?; and (3) the
square of the residual imaginary part of the semiclassi-
cally predicted wave function, [Im(y)]? (which ideally
should be zero).

It can be seen from those figures that the semiclassi-
cal SOS wave functions capture, in almost all cases, the
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FIG. 13. Six consecutive SOS eigenfunctions, starting at classicity 1/A=2500, in the regular regime (E
are the exact (solid curve) and semiclassically computed (dashed) probability densities, and the residual imaginary part from

the semiclassical computation (dotted).
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(f) 112th odd eigenstate: exact 1/k = 2537.00; A(1/h) = —4.25.
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qualitative features of their exact counterparts. It is true
that the semiclassical prediction is often rather poor at
predicting the relative heights of peaks in the probabil-
ity, but its estimate of oscillation length scales along the
SOS is usually quite accurate. It can be seen that the
semiclassical SOS wave functions are often too “sqeezed
in” near the classical turning points, since they cannot
model tunneling. However, in many cases the details are
predicted with surprising fidelity.

V. CONCLUSIONS

What is the point of a semiclassical theory? Histori-
cally, semiclassical theory came before, and inspired, ma-
trix mechanics. However, in the intervening years, as
the quantum method revealed its power and wide ap-
plicability, semiclassical methods barely inched forward.
But finally in the late 1960s and early 1970s, two things
happened. One was the (re)discovery of chaos, and the
realization that a big fraction of classical systems had
been left unexplored and misunderstood, unknowingly
assumed nonexistent by scientists whose training was
virtually limited to ballistic trajectories, harmonic os-
cillators, and two-body Kepler problems. The second
thing that happened was Gutzwiller’s discovery of his
periodic orbit theory for semiclassical quantization. For
the first time, semiclassical mechanics was liberated from
the torus. The fashionable blending of these two devel-
opments, dubbed quantum chaos, is at its core nothing
more than an attempt to understand semiclassical me-
chanics off the torus.

Gutzwiller’s trace formula is a beautiful edifice, so el-
egant that physicists have the gut feeling that it must
be right. This makes it all the more frustrating that it
is so hard to use. Periodic orbits are wonderful, canon-
ically invariant objects that are easy to picture and de-
scribe. Unfortunately, very long period orbits in a typical
chaotic potential are also furiously difficult to calculate.
A speck of phase space initial conditions, in a moderately
to highly chaotic system, stretches into a gossamer tangle
after only a few oscillations; finding periodic orbits means
finding places where the tangle and speck coincide—for
all possible specks of initial conditions. A few such heroic
computations have been done, and they are indeed able
to reproduce the gross features of the quantum spectrum,
and even individual low-lying states. However, as a prac-
tical method the trace formula has a long way to go.

It is not necessary to discard periodic orbit theory, but
maybe it is time to expand our toolbox. It has been noted
with admiration that periodic orbits, of longer and longer
period, eventually densely explore every part of the phase
space. Thus, it is argued, when we go to long enough
orbits, the periodic orbits will “know” all there is to be
known about the system’s classical mechanics. But this
is vast overkill. We do not need to limit ourselves to
periodic orbits if we want to explore all of phase space.
Any set of trajectories—if sprinkled finely enough—does
the job very nicely.

Bogomolny’s quantum surface of section method does

just this. It democratically solicits the contributions of
any and every trajectory. When the vote is over, periodic
orbits still have disproportionate influence. But their in-
fluence comes incidentally, only because periodic orbits
come with an entourage of similar behavior, nonperiodic
trajectories.

This paper presented an exploration of Bogomolny’s
method. We explained how to apply this technique to
an arbitrary potential in a practical way, and estimated
just how efficient the method is when applied to sys-
tems of different dimension and different degrees of chaos.
We suggested a practical and general way, by solving
for eigenclassicities rather than eigenenergies, of testing
this and other semiclassical theories with reduced effort.
Then we used Bogomolny’s method to perform a semi-
classical analysis of a generic, nonscalable, nonlinear os-
cillator, giving practical advice and techniques that will
be useful to future users of the method. Our computation
yielded hundreds of eigenvalue predictions in both the
classically regular and the classically chaotic regimes, all
accurate to less than a mean level spacing. We explored
some of the properties of the T operator, especially its
dimension and the nature of its unitarity. Finally, we also
computed the surface of section wave functions predicted
by the method and found that they also agree quite well
with their exact counterparts.

The hybrid nature of Bogomolny’s transfer operator—
produced by summing classical trajectories, but then di-
agonalized using matrix methods—makes it something
of a semisemiclassical method. As such, it does not
represent the yet unattained “Holy Grail” of a purely
semzclassical method which is able to resolve arbitrar-
ily highly excited eigenenergies (indeed, it falls short on
both counts). What this method is, however, is a practi-
cal method of semiclassically approximating information
about quantum systems; a method which, though some-
what intricate to implement the first time, can function
as a self-contained “black box” that inputs Hamiltonians
and outputs approximate quantum mechanical spectra.
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APPENDIX: RESCALING THE NELSON,
POTENTIAL

In this Appendix, we discuss the rescaling of the
“Nelson,” potential that we use in the text, and its con-
nection to the scaling for the true Nelson potential used
by other authors (for example, [11]). We also discuss
a different way of viewing the act of varying Planck’s
constant (as was done in the main text in the form of
the classicity): by adding an additional parameter and
rescaling the dynamical variables, the same effect can be
obtained while using a constant value for #.
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1. Connection to the “Nelson” potential

The system which has been given the name “Nelson”
is defined by

2
1, 1, 1, (. 1,
= - = = - = . Al
H 2pm+2py+2pz+ 7 2:1: (A1)

Here, overbars are used to distinguish the variables in this
scheme from our variables. For Nelson,, the analogous
equation is

(A2)

1 1 1 1 1.,\2
H=_2 ;2 -.2,.2 = _t.2 )
gPe t gPy towe" + o |y — 3@

The only difference is the factor of % preceding the non-
linear term in the new scaling, added as a minor conve-
nience. The two sets of dynamical variables are related
to one another by a simple scaling:
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‘We should point out that our numerical experiments were
done at a value of w = +/0.05, which is equivalent to the
choice i = 0.1 often used in Nelson potential analyses.
Our selected energies £ = 0.004 and E = 0.2 are equiv-
alent to Nelson energies £ = 0.008 and F = 0.4.

2. Making % constant again

As mentioned in the text, changing % (in the form of
the classicity) is equivalent to a rescaling of the other dy-
namical variables. In the following we present the trans-
formation which gives % back its known constant value
(namely, 1) by inserting a different parameter & in the
system. The equation which we now wish to compare to
Eq. (A2) is as follows:

1, 1, 1.,., 1.
H=—p§+-P§+§w2w2+-(y—

2
~2-2
3 3 3 aw) . (A3)

The other difference is that before [g,,,pzy] = ik,
whereas now [Ge,y; Pa,y] = 2.

Again, a trivial scaling distinguishes the two schemes,
so “changing” % is equivalent to scaling the other dynam-
ical variables as follows:
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